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an oscillator in a constant magnetic field 
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Received 4 October 1988 

Abstract. A new method is proposed in evaluating the Bloch density matrix for a three- 
dimensional charged harmonic oscillator placed in a constant magnetic field. The method 
first reduces the operator exp (-pH) to a product of several factors of a simple nature by 
using the commutation relations among the Hamiltonian components and by performing 
some transformations on the Hamiltonian, and then calculates the matrix element. The 
method is especially efficient when the system has a rotational symmetry around the axis 
parallel to the magnetic field, but it is also useful in other cases. A generalised problem 
in which a uniform electric field coexists is also discussed. 

To make the whole discussion consistent, the density matrix for a one-dimensional 
harmonic oscillator, which plays an essential role in the whole problem, is recalculated in 
the spirit of this method, and it is shown that the present method derives the well known 
form ofthe Bloch density matrix for this system in a quite elementary way, without reference 
to any advanced knowledge of eigenfunctions. 

1. Introduction 

Recently c2nsiderable interest has arisen in the evaluation of the Bloch density matrix 
(r(exp( - p H ) /  r ' )  for a three-dimensional charged oscillator placed in a constant mag- 
netic field (March and Tosi 1985, Manoyan 1986, Glasser 1987, Habeeb 1987) as well 
as of the propagator (rlexp(-iHt/h)lr') for the same system (Chen 1984, Davies 1985, 
Kokiantonis and Castrigiano 1985, Urrutia and Manterola 1986), which may be 
regarded as an analytic continuation of the Bloch density matrix with a pure 
imaginary p. 

Of these previous calculations, March and Tosi solved the Bloch equation, making 
some modifications on the procedure developed by Sondheimer and Wilson (1951). 
Habeeb utilised the canonical transformation studied previously by Glas er af ( 1978). 
Urrutia and Manterola used the Schwinger action principle and all the others utilised 
the path integral method. 

It is true that all of these treatments have their own merits, but it is also undeniable 
that they rely on somewhat oversophisticated techniques and need more or less involved 
manipulations. In this paper, therefore, we develop an alternative method which is 
much simpler than any of the previous treatments, both in principle a n i  in practice. 

In this method we first focus our attention on the operator exp(-PH) and try to 
reduce it to a product of several operators of simple nature, carefully keeping the 
characteristic features of the Hamiltonian in mind. Once this factorisation of the 
operator exp( - P f i )  is achieved, the evaluation of its matrix elements is a rather simple 
matter. For a general potential such a simple reduction will not necessarily be possible 
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and one has to be satisfied with an approximation based on some expansion theorems 
such as Kubo’s (1952). In the present problem, however, the Hamiltonian is simple 
enough and one can in fact achieve a simple factorisation of the operator exp(-PH), 
either by utilising the commutation relations among the Hamiltonian components or 
by making simple transformations. In certain situations the factorisation is even trivial 
from the commutability among components of the Hamiltonian. 

In the following sections we describe the actual procedures to evaluate the Bloch 
density matrix according to this programme. As a first step, in the next section we 
apply the method to the evaluation of the Bloch density matrix for a simple harmonic 
oscillator, which plays an essential role in the subsequent calculations. This will also 
serve as an illustration of the characteristic features of the present method. In P 3 we 
deal with a three-dimensional charged harmonic oscillator placed in a uniform magnetic 
field. There one will see how simply and efficiently the present method can lead to 
the results. Section 4 deals with a generalised problem in which a constant electric 
field coexists with the magnetic field. Finally, in 0 5 we give concluding remarks. 

2. The Bloch density matrix for a simple harmonic oscillator 

As will be seen in subsequent sections, the Bloch density matrix for a three-dimensional 
charged harmonic oscillator placed in a constant magnetic field can eventually be 
reduced to a product of the density matrices for simple (one-dimensional) harmonic 
oscillators. As a preliminary, therefore, in this section we evaluate the Bloch density 
matrix for a simple harmonic oscillator by an operator factorisation method. The 
reason why we take up this well known problem here is threefold: firstly, we want to 
deal with the whole problem in a unified and consistent way. Secondly, the basic ideas 
of the present method are most clearly exemplified in the treatment of this simple 
system. Thirdly, to the author’s knowledge, the procedure described here cannot be 
found in the literature. Although a similar treatment has independently be done by 
Wang (1987), he utilised an advanced procedure, i.e. the Baker-Campbell-Hausdorf 
relations for the Lie algebras of SU(1, 1) derived by Fisher er al (1984) and Truax 
(1989, so that the present method would still be worth recording for its very elementary 
and simple character. 

Now, the Hamiltonian of the system is given by 

A = (1/2m)(e2+ m 2 w 2 i 2 ) .  (2.1) 

3 = exp(-mw2’/2h) (2.2) 

First we notice that by an operator 

and its inverse 3-l the Hamiltonian A can be transformed into the following form: 
AI = .&1fi$ 

= 6 + 6  (2.3) 
where 

6 = (1/2m)e2 (2.4a) 

and 

6 = iiu (26 + ti). (2.46) 
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One of the simplest ways to get the right-hand side of (2.3) will be the use of the formula 

where 

eo= B eo =[A, e,,-l] ( n  3 1) 

( 2 . 5 ~ )  

(2.5b) 

(see, for example, Merzbacher 1970). 
From (2.3) it immediately follows that 

exp(-pA) = i exp[-p(a*+ 6)1&’ 
= exp(-mog2/2R) exp[-p(a*+6)] exp(mwS2/2R). (2.6) 

A further factorisation is possible for exp[ - p (  a* + 6)] as follows: 

exp[-p(a*+ 6)1= exp(-p‘a*) exp(-p6) ( 2 . 7 ~ )  

where 

p ’  = [exp(Zphw) - 1]/2hw. 

exp[-p(a*+ 6)l = k(p)  exp(-pb*) 

In fact, if we define k(p)  by 

(2.7b) 

and differentiate both sides of (2.8) with respect to p, we have 

d k ( P ) / d p  = -k(p) exp(-p6)a* exp(p6) 

= -exp(2p~w)k(p)a*.  (2.9) 

[a*, 61 = 2hw6 (2.10) 

In deriving the last expression for the right-hand side of (2.9) the commutation relation 
between a* and 6, i.e. 

as well as the formula ( 2 . 5 ~ )  are u:ed. The solution of the differential equation (2.9) 
which fulfils the initial condition K (0) = 1 is just the first factor of the right-hand side 
of ( 2 . 7 ~ ) .  

Thus, using ( 2 . 7 ~ )  and (2.7b), one obtains a full factorisation of exp(-pA) as 

exp(-pA) = exp( - mwg2/2 R )  exp( -p’p*’/2m) exp(-p6) exp( mwg2/2 R ). (2.11) 

(2.12u) 

(2.12b) 

where Ix) and lx’) are the eigenkets of 2 belonging to eigenvalues x and x’, respectively, 
while Ip) is the eigenket of p* belonging to the eigenvalue p .  The integran? of (2.126) 
can be written in a simple form if one notes that the operator exp(-pb) is a scale 
change operator with the following property (see (B.12) of Kirzhnits (1967)): 

(2.13a) 

Now, the evaluation of the Bloch density matrix is quite straightforward: 

(xlexp(-pk)lx‘) = exp[mw(x” - X ~ ) / ~ R ] J  
m 

J = 5 d~exp( -P ‘p*2 /2m) t  p)(plexp(-p6)lx‘) 
--cc 

exp ( - p 6 1 x ‘) = ex p( p hw / 2 I x’’) (for any Ix’)) 
where Ix”) is the normalised eigenket of 2 belonging to the eigenvalue x” given by 

x ” =  exp(phw)x’. (2.13b) 
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Using the relation (2.136) the integral J becomes 

J = exp(Phw/2) 1 exp(-P’p2/2m)(xlp)(plx”) dp 
m 

-m 

oc 

= ( 2 h - I  e x p ( ~ h w / 2 )  exp{-(p’/2m)p2 i_, 
+ (i/ h )[x - x‘ exp(Phw )I PI dP 

= [ mw/27rh sinh( Phw )I”’ exp{ - mw [x  - x’ exp(phw ) I 2  
x exp(-/?hw)/2h sinh(phw)}. (2.14) 

Substituting this into ( 2 . 1 2 ~ )  we finally obtain 

(xlexp(-pA)/x’) = A exp{- [~ , (x+x’ )~+  c2(x -X’ )~ ] )  ( 2 . 1 5 ~ )  

where 

A = [mw/277h ~ i n h ( p h w ) ] ’ / ~  (2.156) 

c1 = (mw/4h) tanh(Phw/2) (2.15 c) 

c2 = (mw/4h) coth(phw/2). (2.15d) 

This is the familar form of the Bloch density matrix for a simple harmonic oscillator 
first given in the pioneering work of Husimi (1940). It is very characteristic of the 
present method that it can derive the above result using only commutator algebrasand 
elementary integrations, without any explicit reference to the eigenfunctions of H, in 
contrast to the conventional method. 

3. The Bloch density matrix for a charged oscillator in a constant magnetic field 

Consider a three-dimensional harmonic oscillator with an electric charge e placed in 
a constant magnetic field of strength X The direction of the magnetic field is assumed 
to be parallel to one of the principal axes of the oscillator, say the z axis, so that the 
vector potential may be taken as 

‘4 = (-4Xj,  fX2,O). (3.1) 

The general cases in which the magnetic field is not necessarily parallel to one of the 
principal axes of the oscillator will be left for future work. With this choice of the 
vector potential, the Hamiltonian of the system may be written as 

A = (1/2m)($ - e‘4/cl2 + t m ( w : i 2 +  w : j 2 +  w : f 2 )  

=A,+Az (3.2) 

2, = Ax + Ay - w i z  

Ax = (1/2m)p*:+tmwi2i2 (3.4a) 

Az = (1/2m)p*i+:mw:;~ (3.4c) 

(3.3) 

i,, = (1/2m)p*:+fmw;’y** (3.46) 
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where 

w = eX/2mc w ;  = ( w f + w 2 ) l ’ 2  ( i = 1 , 2 )  ( 3 . 5 ~ )  

i, = qy -Fix. (3.56) 

Clearly, f i z  commutes with any one of fix, fiy and i,, so that we have 

exp(-pfi)  = exp(-pfi,) exp(-pfi,). (3.6) 

For a further reduction of the right-hand side of (3.6) it will be convenient to divide 
the problem into two cases: case ( a )  in which w ,  = w 2  and case (b)  in which w l  # w 2 .  

3.1. Case (a): w ,  = w 2 = w o  

In this case the present method becomes particularly simple. Obviously 

[ f ix,  f i J  = 0. (3.7) 

[ ( f i x  + fiJ, i, ] = 0. 

exp(-plj,) = exp(-pfix) exp(-pfiy) exp(pwiz) 

Also, since the harmonic oscillator potential has a rotational symmetry about the z axis, 

(3.8) 

Using these facts, one can immediately decompose exp(-pfi,) as 

(3.9) 

which yields 

exp(-pfi)  = exp(-&) exp(-pfiy) exp(-pfiz) exp(pwi,). (3.10) 

To evaluate the Blo:h density matrix (rlexp( -pfi)Ir‘), recall that for a real parameter 
8 the operator exp(i8LJh) represents a rotation around the z axis through an angle 
8 and has the following property: 

exp(iei , /h) l r )= Ir”) for any Ir) = IX)lY)IZ) ( 3 . 1 1 ~ )  

where 

Ir”) = Ix”)ly”)lz”) (3.11b) 

x” = x cos 8 + y sin 8 y” = -x sin 8 + y cos 8 z ” =  z. (3 .11~)  

Here the kets Ix’’), Iy”) and Iz”) as well as lx), Iy) and lz) are normalised eigenvectors 
of i, y^ and 2 belonging to the eigenvalues denoted in I ). Note that the relation given 
by (3.11a)-(3.11~) hold even when 8 becomes pure imaginary. Substituting 8 = -ihpw 
into (3.11a)-(3.11~), we have 

( 3 . 1 2 ~ )  exp(pwi,)lr‘) = Irrr) = ~x”)ly”)lz”) 

x”=  x’cosh(phw) -iy’sinh(phw) 

y”=y’  cosh(phw)+ix‘sinh(phw) 

2’’ = z’. 

With the help of (3.12a), we can obtain 

(3.12 b) 
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Clearly each factor of the right-hand side of (3.13) is the Bloch density matrix for a 
linear harmonic oscillator of the form of ( 2 . 1 5 ~ ) .  A straightforward calculation yields 

(3.14) (rIexp(-pfi)Irt)= c I2(x ,y ;  X I ,  Y’; P ) C J Z ;  z’; P )  
where 

x exp{-al[(x +x’),+ ( y  +y’)’] - a 2 [ ( x  -x’)’+ ( y  -y’)’] -ib(xy’-x’y)} 
(3.15) 

and 

G ( Z ,  z’; P )  = (zlexP(-Pfiz)lz’) 

= [mw3/2.rrh sinh(~hw3)]’”exp{-[cI(z+ z’)’+ c2( z  - z’),]}. (3.16) 

The quantity w ’  in (3.15) is defined as 

w ’ =  (w;+w2)1’2 (3.17) 

and the coefficients in (3.15) and (3.16) are 

a ,  = [ mw’/4h sinh(Phw’)J[cosh(pAw’) -cosh(phw)] (3.18a) 

a,  = [ m w ‘ / 4 h  sinh(phw’)][cosh(phw’)+cosh(phw)] (3.18b) 

b = mu’ sinh(phw)/h sinh(phw’) ( 3 . 1 8 ~ )  

c1 = ( mw3/4h) tanh(phw3/2) (3.18d) 

c2 = (mw3/4h) coth(/3hw3/2). (3.18e) 

The expression (3.15) for C12(x, y ;  x’y’; p )  exactly coincides with the result obtained 
by March and Tosi (1985). Also, if one rewrites (3.15) and (3.16) by using the 
cyclindrical coordinates and substitutes them into the expression (3.14), one will 
immediately be led to the result obtained by Manoyan (1986). 

3.2. Case (b): w ,  # w z  

In this case the situation becomes somewhat complicated because i, ?o longer 
commutes with ( f i x  + fi,,). But one can stili reduce the operator exp(-pH,) into a 
product of simple factors by eliminating the L, term included in &, by an appropriate 
unitary tlfansforyation as below. 

Let U,(e , ) ,  U2(8,)  and U,(&, e,) be the operators defined by 

fil(e,) = exp(-imwe,;f/ A )  (3.19a) 

(3.19 b) 

( 3 . 1 9 ~ )  
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The unitary operator CA( 81, 02), together with its Hermitian conjugate 6k(&, 021, 

transforms 2, 9, ix and p*,. as 
( 3 . 2 0 a )  

(3 .20 b )  
( 3 . 2 0 ~ )  
( 3 . 2 0 d )  

ir L 2 CA = i + ( e,/ mw fiY 

irLjilA = j + ( e 2 / m w ) j x  
irkixfiA = ( 1  - e1e2)sx - mwe,j  
ii :py irA = ( 1 - el e 2 )  b.v - mw e i. 

0 , =  ( w ; 2 - w y - - s ) / 4 w 2  ( 3 . 2 1 a )  

o2 = - 2 m w 2 / S  (3.21 b )  

With the choice of the values of and O2 given by 

where S is defined as 
S = sgn( w i 2  - w i2)[ ( w i 2  - w {2)2 + 8w2(  w i z  + w ; ~ ) ] ” ~  

f i k 8 , f i A  = 8 I - k  8 2  ( 3 . 2 3 )  

(3 .22)  

it may readily be shown that 8, defined by ( 3 . 3 ~ )  can be transformed as 

( 3 . 2 4 a )  
( 3 . 2 4 6 )  
( 3 . 2 4 ~ )  

( 3 . 2 5 ~ )  
( 3 . 2 5 b )  

( 3 . 2 5 4  
Note that A, and fi2 commute with each other. Also, it can be shown that m l ,  m2,  
Cl: and SZ: are positive, provided that w :  = 0;’- w 2 >  0 and w :  = ai2 - w 2 >  0. If wi = 0 
( i  = 1 ,  2 ) ,  then SZ, = 0, but mi remains positive. Thus, in an extended meaning, 8, and 
f i 2  are the Hamiltonians of two independent harmonic oscillators. 

Clearly it follows from (3 .23) - (3 .25)  that 
exp(-p&) = i’, exp[-p(Al + 8 2 ) l  ir; 

= irA exp(-pA,) exp(-pfi2)ir; (3 .26)  
so that we have a full factorisation of exp(-p8)  as 

exp(-pA) = irA exp(-pri,) exp(-pfi2) irL exp(-pfi2). (3 .27)  
The Bloch density matrix can now be written as 

(+xp(-pfi)~r’) = ~ ( x ,  Y ;  X I ,  Y’;  p)(zIexp(-pfiziz)izt) (3 .28)  
where 

C(X, Y ;  x’, y’;  P )  
=(xl(YI C A  exp(-PA1) exp(-pk2) fiLlx’)lY‘) 

(3 .29)  
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The factors (x,lexp(-/3fil)lx2), (yllexp( - P f i 2 ) I y 2 )  and (zlexp(-Pfiz)lz‘) on the right- 
hand side of (3.29) are again the density matrices for harmonic oscillators. The matrix 
elements of transformation operator can be evaluated as 

(x, Yl fi&, Y’)  = (XKYI fi*IX’)lY’) 

= exp(-imwO,xy/ h)(x, ylexp(-i02fix&./mhw )lx’, y ’ )  

= exp(-imwe,xy/ h )  dp, dp, exp( -ih&p,p,,/mhu) 
-X 

x (x IPx)(Y I p y x  P x  I x” P y  Iv’) 
= (1/2.rrhlBI) exp[(-i/hB)(-Axy +xy’+x‘y -x’y’)] 

where 

~ = i - e ~ e ~  B = -e,/ mu. 
Thus a straightforward calculation yields 

( 3 . 3 0 ~ )  

(3.30b) 

= C(x, y ;  x’, y’; P)[mw3/2nh ~inh(phw,) ]”~  

x exp{-(mw,/4h)[tanh(phw3/2)(z + ~‘)~+coth(Phw, /2) (z  - z‘)’]} 

C(X, Y ;  x’y’; P )  
= M (  P ) exp[ -(iA/ hB)(xy - x’y’)] exp[ a (x + x’), + a’( x - x ’ ) ~  

+ b(y + y’)’ + b’(y - Y ‘ ) ~  + C(  x + x’)(Y - y’) + c‘( x - x’)(Y + y ’ ) ]  

where 

M ( P )  = (2.rrhm,fll)-’(mlm,fllR2)”2[yl y l  sinh(phfl,) sinh(phf12)]-’” 

a = -(4hyl)-’ a’= -(4hy;)-’ 

b E -(4hy2)-’ b’ = -(4hy;)-’ 

c = i co th(phR1/2) /2ml~,hByl  

c’=i  tanh(phn,/2)/2m,fllhBy, 

y1 = coth(~hRl /2) /m,f l ,  + m2R2B2 coth(phn2) 

y \  = tanh(phfll /2)/m,fll  + m2n2B2 tanh(phf12) 

y2 = coth(/3hf12/2)/m2f12+ m l n ,  B2 coth(phfll) 

y;  = tanh(phf12/2)/m,f12+ mlCl, B2 tanh(phR,). 

(3.31) 

(3.32) 

(3.33) 

(3.34a) 

(3.34b) 

(3.34c) 

(3.35a) 

(3.35b) 

(3.352) 

(3.35d) 
To compare this result with those of previous studies, one may rewrite (3.32) in the 
following form: 

C(X, Y ;  x’y’; P )  
= N ( P )  e x p { ( m / 2 h ~ ( ~ ) ) [ a ~ ( x ~  + x”) + a 2 ( y 2  + y t 2 )  

+au,xx’+a,yy’+ a,(x ’y-xy ’ )+a, (xy-x ’y ’ ) ] ) .  (3.36) 
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The calculated results for the coefficients (Y,-(Yg as well as N ( P ) ,  D ( P )  are in agreement 
with those obtained by Habeeb (1987) if one corrects unfortunate misprints found in 
his (24) and ( 2 5 )  by removing all the primes on w ;  and w ;  appearing there and by 
replacing (fl:-n:) in his expression for (Yg by ( w t - u i ) .  Also, the coefficients corre- 
spond closely to those of the propagator obtained by Kokiantonis and Castrigiano 
(1985) and Urrutia and Manterola (1986). 

In finishing this subsection it will be worth adding some comments. Essentially 
the same diagonalisation of fi, as given in (3.23) yas  achileved by Glas et a1 (1978) 
without explicit use of the transformation operators U, and U: (Habeeb (1987) utilised 
their result in his calculation of the density matrix). However, the use of the explicit 
form of the unitary transformation operators certainly makes the treatment of the 
problem easier and more transparent. The simplicity of the present method in the 
evaluation of the transformation function will suffice to see this (compare (3.30) with 
the derivation of (30) of Glas et a1 (1978)). 

Also, it should be emphsasised that the above procedure for reducing exp(-Pfi)  
to a product of factors of a siTple niatyre is not unique. For example, the same result 
can be attained by the use of U, = U, U , .  There will be several other ways which lead 
to the equivalent result. Some of these will be reported elsewhere. 

4. The case when a uniform electric field coexists 

So far we have developed an operator method to evaluate the Bloch density matrix 
for an oscillator placed in a constant magnetic field. With a slight modification the 
same method can also be applicable to a generalised case in which a uniform electric 
field E ( & ,  E y ,  E , )  coexists. 

The Hamiltonian now becomes 

A = f i o ( ; ) + e E . i  ( 4 . 1 ~ )  

fio(i) being the Hamiltonian for zero electric field, i.e. 

iio($) = (1/2m )[ p* - e a (  i ) /  cl’+ jm + w:y*’ + (4.lb) 

and 

a(;)=(-&Yj,$Yi,o)* ( 4 . 1 ~ )  

If one defines a constant vector ro by 

ro= (xo, Y o ,  zo) = ( - e / m ) ( E x / o : ,  E.v/o:, W w : )  

H = H ’ - f m ( w : x i +  w : y i +  w : z t )  

(4.2) 
the Hamiltonian fi may be rewritten as 

A *  

(4.3) 
where 

A’= (1/2m)[$- e i ( i ) / c l ’ + f m [ w : ( i  -x0) ’+  w:(y^-y,)’+ w z ( 2 -  zo),1. (4.4) 
Now it is easy to see that by a gauge transformation using the unitary operator f. 
defined by 
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and its Hermitian conjugate f’, f i ’  may be transformed as 

r’wr = ~ ~ / ~ m ~ ~ p * - e ~ ~ i - r o ~ / c ~ 2 + ~ m ~ w ~ ~ ~ - ~ o ~ 2 + w ~ ~ y * - y o ~ 2 + w ~ ~ i - z o ~ 2 ~  

Since Go( i - ro) can be related to fro( i) by the displacement operator exp(iro * p*/ h )  as 

A A  A A 

= fio(i- ro). (4.6) 

fio(i - ro) = exp(-iro p*/ h )fio(i) exp(iro * p*/ h )  (4.7) 

(4.8) 

it follows that 
A A  

H = r exp(-iro p*/  h ) f i o ( i )  exp(iro - p*/ h)Pt ++m(w;xi+ w:yg+ w:z$. 

Accordingly 

exp(-pfi) = exp[-pm(w:xi+ w:yg+w:zi)/21 

x i .  exp(-iro ~p*/h)exp[-pfio(i)lexp(iro .p*/h) f ‘  (4.9) 

which immediately leads to 

(rIexp( - ~ f i ) I  r f )  
= exp[-pm (w:xi + w : y i  + w:zi)/2] 

(4.10) 

In deriving (4.10) use is made of the relation 

exp(iro.p*/h)\r)= Ir-rO). (4.11) 

Since fio(i) is nothing other than the Hamiltonian of an oscillator in a constant 
magnetic field discussed before, the last factor on the right-hand side of (4.10) can be 
obtained from the results obtained in the preceding sections by a simple replacement 
(r, r ‘ )+ ( r - ro ,  r’-rO). 

For an isotropic oscillator, in particular, (rlexp[-pfio(i)]lr’) is equal to what is 
given in (3.16) with an obvious replacement of w3 by wo.  In this simple case, therefore, 
one has 

(rIexp(-pfi)Irr) 
= A exp(-pmwiri/2) exp{-i(mw/ h)[yo(x - x’) -xo(y -yo)]) 

x exp{-ul[(x + X I -  2x0)’+ ( y  +y’-2yo)2] - u2[(x - x’)*+ ( y  -y’)’] 

-ib[(x -xo)(y’-yo) - (x’-xo)(y -yo)] - [c,(z+ z ’ - ~ z , ) ~ +  c2(z - z’ )~]}  
( 4 . 1 2 ~ )  

where 

r ~ =  (xO, y o ,  zo) = ( - e / m d ) ( E , ,  E,, E,) (4.12b) 
and the coefficients are those given in (3.18u)-(3.18e). If one puts E = (0, 0, E ) ,  as 
a special case of (4.12u), one obtains 

(rlexp(-Pfi)ir) 
= A  exp(-pmwiri/2) e x p { - ~ , [ ( x + x ‘ ) ~ + ( y + y ’ ) * ]  

- u2[(x - x‘)’+ ( y  -y’)’] - ib(xy‘ - x’y) 

- c,[(z + z‘- 2zOj2+ c 2 ( z  - z’)’]} z o =  - e E / m w i  (4.13) 



Bloch density matrix for oscillator in magnetic field 2425 

which is in agreement with (2)  of Glasser (1987), except for the spin term included in 
it. 

(r/exp( -PA)I r! )  

Similarly if one puts E = ( E ,  0, O ) ,  one obtains 

= A e x p ( - p m w i x ~ / 2 ) e x p [ ( i m w / h ) x o y ]  

x exp{-a,[(x+x' -2x0)*+ ( y +  y')'] - a2[(x -x ')*+ (y - Y ' ) ~ ]  

-c , [ (z+z ' )2+c2(z-z ' )~]}  xo= -eE/mwi. (4.14) 

The expression (4.14) will be useful in the study of the effect of the transverse electric 
field on various physical systems which can be approximated by an isotropic oscillator 
model. 

5. Conclusions 

In the preceding sections we have developed a new method of evaluating the Bloch 
density matrices for a charged oscillator placed in uniform magnetic, and electric, 
fields and have seen that the present method brings about a remarkable simplification 
in the calculation of this quantity. Some new results have also been presented. Since 
one may formally regard the propagator (rlexp(-iAr/ h ) ( r ' )  as the Bloch density matrix 
for a pure imaginary P, one can also use the present method in the evaluation of the 
propagator. 

Needless to say, the Bloch density matrix is a quantity of fundamental importance 
in describing the properties of an assembly of independent particles moving in an 
effective potential field. In fact, once it is known, both the Dirac density matrix and 
the partition function for the independent fermions can be evaluated straightforwardly 
as the inverse Laplace transforms of either the Bloch density matrix itself or some 
function including it (Sondheimer and Wilson 1951, March and Murray 1960). Thus 
a great many problems can be reduced to the evaluation of the Bloch density matrix. 

Since there are many systems which are well approximated by an assembly of 
independent oscillators, the present method and its results will usefully be applied to 
a variety of problems in nuclear and condensed matter physics as well as in atomic 
physics. 

Apart from its actual applications, the harmonic oscillator is one ofthe rare examples 
of exactly solvable problems in quantum mechanics. Also, it has provided us with 
much information about essential features from the very early stage of quantum 
mechanics to the present day. It will always be useful to study such a fundamental 
problem from various points of view. We hope that in this meaning, too, the present 
study would give some contribution in casting light on a certain aspect of the oscillator 
problem. 
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